- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Clavier, Pierre (1)
-
Geist, Matthieu (1)
-
Le_Pennec, Erwan (1)
-
Mazumdar, Eric (1)
-
Shi, Laixi (1)
-
Wierman, Adam (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To address the challenges of sim-to-real gap and sample efficiency in reinforcement learning (RL), this work studies distributionally robust Markov decision processes (RMDPs) --- optimize the worst-case performance when the deployed environment is within an uncertainty set around some nominal MDP. Despite recent efforts, the sample complexity of RMDPs has remained largely undetermined. While the statistical implications of distributional robustness in RL have been explored in some specific cases, the generalizability of the existing findings remains unclear, especially in comparison to standard RL. Assuming access to a generative model that samples from the nominal MDP, we examine the sample complexity of RMDPs using a class of generalized norms as the 'distance' function for the uncertainty set, under two commonly adopted -rectangular and -rectangular conditions. Our results imply that RMDPs can be more sample-efficient to solve than standard MDPs using generalized norms in both - and -rectangular cases, potentially inspiring more empirical research. We provide a near-optimal upper bound and a matching minimax lower bound for the -rectangular scenarios. For -rectangular cases, we improve the state-of-the-art upper bound and also derive a lower bound using norm that verifies the tightness.more » « less
An official website of the United States government

Full Text Available